Search results

Search for "first-principles calculations" in Full Text gives 41 result(s) in Beilstein Journal of Nanotechnology.

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • photoelectron spectra, supported by first principles calculations [35]. Conclusion We have used density functional theory to study the structure and stability of phase boundaries found in gold nanoislands grown on Ge substrates. Because of the presence of epitaxial relationships between Au-fcc and Ge(001) or Au
  • principles calculations of the cohesive energy and elastic constants as well as phonon dispersion relations show stability of both hcp and dhcp polytypes of gold [24]. Ab initio studies indicate higher stability of the fcc phase and a tendency towards hcp → fcc phase transformation. However, the calculated
  • results show that the Au-fcc borders the Ge(001) surface, whereas a preferred hcp crystal orientation is when the Au(010) plane, or Au() in the Miller–Bravais notation, is parallel to the Ge(111) plane. An atomistic model of the planar interface between Au-fcc and Ge(001) was also proposed. First
PDF
Album
Full Research Paper
Published 15 Nov 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • ), honeycomb dumbbell (HDS) (hP8, P6/mmm, no.191), and large honeycomb dumbbell (LHDS) (hP10, P6/mmm, no.191), are depicted in Figure 1. Additionally, the crystallographic data for them are stored in crystallographic information files (CIFs) in Supporting Information Files 1–5. The results of first-principles
  • calculations show that all silicene phases have hexagonal symmetry. The symmetry characteristics of a structure determine the symmetry of its physical properties (cf. Neumann’s Principle and Curie laws) [30][46]. For 2D linear hyperelastic materials, there are four classes of symmetry [25], and hexagonal
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • -step gel filtration. We found that the riboflavin molecules are selectively adsorbed on small-diameter semiconducting SWCNTs facilitating specific hydrophobic interactions between the nanotubes and gel extraction media consistent with first-principles calculations. Results and Discussion Riboflavin as
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • the O K-edge in nickel-doped zirconia with and without O vacancies are presented and discussed. A conclusion is given in the final section. Computational Methodology Structural relaxation First principles calculations have been performed with the Quantum-ESPRESSO code [38] using the plane waves basis
PDF
Album
Full Research Paper
Published 15 Sep 2022

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • thermophysical properties of the π-SnSe alloy, we have used first-principles calculations based on the full-potential linearized augmented plane-wave (FP-LAPW) method, implemented in the WIEN2k code [50][51]. A preliminary crystal lattice is initially made by using the details presented in [46] and then atomic
  • , optoelectronic, thermodynamic, and thermoelectric properties of the π-SnSe alloy by first-principles calculations. The π-SnSe has a cubic phase (12.2 Å, P213), belongs to a class of non-centrosymmetric crystals which comprises 64 atoms per unit cell. Our DFT electronic calculations reveal that π-SnSe has an
PDF
Album
Full Research Paper
Published 05 Oct 2021

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • monolayer formation and hybrid interfaces. In the following sections, we first introduce our computational methods for adsorbate structure identification with BOSS, the first-principles calculations, and their application on detecting the stable adsorbates of camphor on Cu(111). We then present our results
  • corresponding charge distribution of an isolated molecule. With this analysis, we study the effect of adsorption on the electronic structure of camphor in the identified stable structures. First-principles calculations We use density-functional theory to calculate the adsorption energy of camphor on Cu(111) in
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Structural and electronic properties of SnO2 doped with non-metal elements

  • Jianyuan Yu,
  • Yingeng Wang,
  • Yan Huang,
  • Xiuwen Wang,
  • Jing Guo,
  • Jingkai Yang and
  • Hongli Zhao

Beilstein J. Nanotechnol. 2020, 11, 1321–1328, doi:10.3762/bjnano.11.116

Graphical Abstract
  • SnO2 doped with non-metal elements (F, S, C, B, and N) were studied using first-principles calculations. The theoretical results show that doping of non-metal elements cannot change the structure of SnO2 but result in a slight expansion of the lattice volume. The most obvious finding from the analysis
  • performance of SnO2 is not yet clear. In recent years, many researchers used first-principles calculations to scrutinize the doping of SnO2 with non-metal elements such as F [11][12] and S [13]. The results show that the optical and electrical properties of SnO2 thin films can be changed by doping with
PDF
Album
Full Research Paper
Published 03 Sep 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • donors and destroy the crystal symmetry, thereby enlarging the carrier concentration. Conclusion In summary, we have presented a comprehensive study of the thermoelectric properties of the MoO3 monolayer by first-principles calculations and Boltzmann transport theory. Our results indicate that the MoO3
  • oxygen vacancies leads to a sharp peak near the Fermi level in the density of states. This proves to be an effective way to enhance the ZT values of the MoO3 monolayer. The increased ZT values can reach 0.84 (x-axis) and 0.12 (y-axis) at 300 K. Keywords: Boltzmann transport theory; first-principles
  • -principles calculations. The calculations of the electrical properties of the MoO3 monolayer are performed using density functional theory (DFT) as implemented in the Vienna ab initio simulation package (VASP) code [18][19]. We utilize the generalized gradient approximation (GGA) of the Perdew–Burke
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • first principles calculations. The zigzag BP devices and the armchair BP devices exhibit different conductance–pressure relationships. For the zigzag BP devices conductance is robust against stress when the out-of-plane pressure ratio is less than 15%, and then increases rapidly until the conductive
  • orthorhombic semiconductor to a simple cubic metal with increasing pressure by performing in situ ADXRD and Raman spectroscopy with the assistance of a DAC apparatus. They also carried out first principles calculations to interpret the metallic behavior of BP under pressure. Pablo et al. investigated the
  • accumulated isotropically in strain-reduced regions, instead of occurring in the regions with a high tensile strain like in MoS2. Deniz et al. investigated the strain-related optical properties of monolayer BP using first principles calculations [7]. They found that the optical response of BP is sensitive to
PDF
Album
Full Research Paper
Published 24 Sep 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • Heusler alloys in spintronics devices. By performing first principles calculations combined with the nonequilibrium Green’s function, it is revealed that spin magnetic moments of interfacial atoms suffer a decrease, and the electronic structure shows that the TiNiB-terminated structure possesses the
  • % [9]. Several CPP-SVs have employed conventional Heusler alloys such as Co2Fe0.4Mn0.6Si [10] and Co2MnSi [11], also reaching a high MR ratio. On the other hand, a state-of-the-art theoretical approach that combines first principles calculations with the Keldysh nonequilibrium Green’s function theory
  • largest MR value and can be regarded as a promising candidate for furture spintronics devices. Conclusion By employing first principles calculations combined with the nonequilibrium Green’s function, we studied the interfacial magnetic properties, interfacial electronic structure and spin transport
PDF
Album
Full Research Paper
Published 08 Aug 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • electronegativity of Y, H and O are 1.22, 2.20 and 3.44, respectively. Bader charge analysis shows that the Y(OH)3 crystal structure is formed by 0.73 (0.60) e charge transfer from the Y (H) to the O atom. Possible scenarios for Eu doping in a Y(OH)3 crystal is also investigated by state-of-the-art first principles
  • calculations. Total energy minimization calculations suggest that while substitutional doping of Eu atoms by Y, O or H is energetically unfavorable, interstitial doping at the holey site surrounded by the H atoms is a preferable adsorption site (Figure 5a). It was observed that the interstitial doping of Eu
PDF
Album
Full Research Paper
Published 07 Jun 2019

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • the backlight for non-emissive displays. The degradation of oxide-based TFTs under this kind of negative-bias-illumination-stress (NBIS) is a key issue that has been investigated over the last decade [6][7]. Despite all efforts to unveil the mechanisms of NBIS, such as first-principles calculations
PDF
Album
Full Research Paper
Published 27 May 2019

Electronic and magnetic properties of doped black phosphorene with concentration dependence

  • Ke Wang,
  • Hai Wang,
  • Min Zhang,
  • Yan Liu and
  • Wei Zhao

Beilstein J. Nanotechnol. 2019, 10, 993–1001, doi:10.3762/bjnano.10.100

Graphical Abstract
  • Ke Wang Hai Wang Min Zhang Yan Liu Wei Zhao Xidian University, No 2 Taibai Road, Xi'an, Shaanxi Province, 710071, China 10.3762/bjnano.10.100 Abstract In this paper, we employed first-principles calculations and chose Si and S atoms as impurities to explore the concentration-dependence of
  • . According to the first-principles calculations, we find that the magnetic moment of doped phosphorene increases significantly with increasing the in-plane size of the supercell and reducing the impurity concentration, while the bandgap of doped phosphorene is opened due to the shrinking of the charge
  • to the enhancement of volume, which leads to the differences of magnetism and electronic structure. Conclusion We have used first-principles calculations and changed the supercell size to estimate the impact of the dopant concentration on the electronic and magnetic properties of doped phosphorene
PDF
Album
Full Research Paper
Published 02 May 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • , ferroelectric materials, storage materials, and pigments [25]. Siidra et al. [26] have investigated the synthesis and modular structural architectures of mineralogically inspired novel Pb oxyhalides. In parallel, theoretical works about these compounds were realized. For example, first-principles calculations
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • the AGNR sensor that are simulated based both on the proposed model and first principles calculations are compared, and an acceptable agreement is achieved. Keywords: armchair graphene nanoribbons; carrier velocity; gas sensor; I–V characteristics; molecular adsorption; Introduction The unique
PDF
Album
Full Research Paper
Published 04 Mar 2019

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • would give rise to an expected dispersion of the binding energy of dopants depending on external factors. Accordingly, it has been shown, using first principles calculations in transition-metal dichalcogenides, that dopants can be tuned from deep to shallow by using different substrates [34]. This
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Predicting the strain-mediated topological phase transition in 3D cubic ThTaN3

  • Chunmei Zhang and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1399–1404, doi:10.3762/bjnano.9.132

Graphical Abstract
  • expected to substantially alter the electronic band structure and thus achieve an exotic topological property [26]. By using first-principles calculations, we demonstrate here, for the first time, that the cubic perovskite ThTaN3, a relatively large band gap semiconductor, can turn into a TI under moderate
  • of the N atom [12][29][30]. Computational Methods First-principles calculations were performed based on density functional theory (DFT) as implemented in the plane wave basis VASP code [31][32][33]. A generalized gradient approximation (GGA) in the Perdew, Burke, and Ernzerhof (PBE) form exchange
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • interfacial effects. Scanning probe microscopy (SPM) and Raman scattering experiments, along with first-principles calculations, reveal the presence of a highly ordered RA self-assembled monolayer atop graphene and graphite. The electro-optical characterization of the hybrid system discloses interfacial
  • system were done at different temperatures using a liquid He immersion cryostat and temperature controller. The sample excitation was performed using a 355 nm line from a pulsed Nd:YAG laser and the PL detection was made by an Andor spectrometer. Ab initio calculations First-principles calculations were
  • -principles calculations (Figure 2). Five different molecular configurations for a single RA molecule atop graphene were considered, labeled as α, β, γ, ζ and ξ (see Figure 2a). The energetics studies for these structures pointed to α as the most stable configuration. In other words, the RA molecule rests
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • Xiaoli Sun Zhiguo Wang School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China 10.3762/bjnano.8.270 Abstract Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide
PDF
Album
Full Research Paper
Published 15 Dec 2017

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the
  • inelastic charge transport through single-molecule junctions of a bis(furanylmethanthiol)ethene with a fluorinated cyclopentene bridging unit (C5F-ThM; for nomenclature see [22]). Experimentally measured electrical conductance and IET spectra are compared with first-principles calculations in open and
PDF
Album
Full Research Paper
Published 06 Dec 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • sputtered with a beam of Ar ions with 1 kV energy. The emission current used was 25 mA, which resulted in an ion current of 0.33 μA. The shape of the beam is circular with a diameter of approximately 2 mm. First-principles calculations are based on the projector-augmented wave (PAW) method [35][36] within
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Coexistence of strongly buckled germanene phases on Al(111)

  • Weimin Wang and
  • Roger I. G. Uhrberg

Beilstein J. Nanotechnol. 2017, 8, 1946–1951, doi:10.3762/bjnano.8.195

Graphical Abstract
  • energy electron diffraction and core-level photoelectron spectroscopy. Experimental results show that a germanium layer can be formed at a relatively high substrate temperature showing either (3×3) or (√7×√7)R±19.1° reconstructions. First-principles calculations based on density functional theory suggest
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2017

α-Silicene as oxidation-resistant ultra-thin coating material

  • Ali Kandemir,
  • Fadil Iyikanat,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1808–1814, doi:10.3762/bjnano.8.182

Graphical Abstract
  • silicene on top of Ag(111). First principles calculations were performed using the Vienna ab initio simulation package (VASP) [22][23], which is based on density functional theory. The projector-augmented wave (PAW) [24][25] formalism was used in the calculations. For the exchange–correlation energy, the
  • principles calculations to investigate the oxidation properties of α-silicene as a coating material on Ag(111). It was found that an O2 molecule interact with the Ag surface with a low binding energy, while a single oxygen atom interact strongly with the surface. The silicene coating on Ag surface was
  • silicene on metal substrates. One may claim that silicene retains its extreme reactivity to oxygen atoms even after forming localized silicon-oxide structures. As a result, silicene has great potential to capture unwanted atoms and to protect the metal surface. Conclusions In this study, we performed first
PDF
Album
Full Research Paper
Published 31 Aug 2017

3D continuum phonon model for group-IV 2D materials

  • Morten Willatzen,
  • Lok C. Lew Yan Voon,
  • Appala Naidu Gandi and
  • Udo Schwingenschlögl

Beilstein J. Nanotechnol. 2017, 8, 1345–1356, doi:10.3762/bjnano.8.136

Graphical Abstract
  • , we compare them to DFT calculations. The continuum theory will require as input elasticity constants, piezoelectric coefficients, and dielectric functions. DFT We first give the standard phonon dispersion relation as obtained from DFT calculations (Figure 1). They are obtained from first principles
  • calculations using the Vienna ab initio simulation package (VASP) [17] with a kinetic energy cut-off of 500 eV in the expansion of the electronic wave functions. Four C and six Mo and S valence electrons are considered. The generalized gradient approximation of the exchange–correlation potential in the Perdew
PDF
Album
Full Research Paper
Published 30 Jun 2017
Other Beilstein-Institut Open Science Activities